Corrigenda

Gas-phase Rearrangements of Deprotonated Ketoximes, Ketoxime Ethers, and Aldoximes. A Negative-ion Beckmann Rearrangement

Gregory W. Adams, John H. Bowie, and Roger N. Hayes

J. Chem. Soc., Perkin Trans. 2, 1989, 2159

Page 2159: Add the following footnote, which refers to the line: 'We suggest that loss of water occurs from (2) (Scheme 1) by a negative-ion Beckmann rearrangement, with methyl-anion migration proceeding from N to form ion complex (3).§' The Editor would like to apologise for this omission.

§ The alternative mechanism involving direct attack of the methylene anion at nitrogen [a Neber type arrangement (D. J. Cram, 'Fundamentals of Carbanion Chemistry,' Academic Press, New York and London, 1965, p. 249] seems a less likely possibility and should, in any case, ultimately produce the same product ion.

A Theoretical Study of the Proton Affinities of Water, Alcohols, and Ethers: Absolute versus Relative Basicities

José-Luis M. Abboud, José Elguero, Daniel Liotard, M'Hammed Essefar,

Mohammed El Mouhtadi,* and Robert W. Taft J. Chem. Soc., Perkin Trans. 2, 1990, 565

Page 566, delete Table 1 and replace with the following:

ROR′			$E_{\rm pa}/\rm kcal\ mol^{-1}$			
R	R′	Number	Experimental ^a	STO 3-21G	MNDO	AM1
Н	Н	(1)	167.3	191.6	172.1	164.5
Me	Н	(2)	182.5	204.8	175.0	171.9
Et	Н	(3)	187.8	208.7	177.1	178.8
Pr	Н	(4)	189.6	210.3	178.2	179.0
Bu	н	(5)	190.2	211.8	178.8	179.5
Pr ⁱ	Н	(6)	192.0 ^{<i>b</i>}	214.0	180.2	182.8
Bu ^ı	Н	(7)	193.4 ^{<i>b</i>}	215.5	181.8	186.5
CF ₃ CH ₂	Н	(8)	169.3	186.8	155.8	157.9
Me	Me	(9)	191.1	213.1	177.4	177.4
Et	Me	(10)	195.2	216.7	179.4	183.4
Pr	Me	(11)	196.1			
Bu	Me	(12)	197.3			
Pr ⁱ	Me	(13)	198.6	220.4	181.1	187.8
Bu'	Me	(14)	201.1	223.0	183.6	190.9
1-Adamantyl	Me	(15)	206.0			
Et	Et	(16)	198.5	219.8	181.0	188.7
Pr ⁱ	Et	(17)	202.3			
Bu'	Et	(18)	205.1			
Pr	Pr	(19)	201.1			
Pr ⁱ	Pr ⁱ	(20)	204.8			
Buʻ	Bu ¹	(21)	212.0	208.5°	188.7	200.9
Cyclic ethers						
(CH,),O		(22)	186.4	203.8	179.4	177.2
(CH ₂) ₃ O		(23)	193.2	220.4	183.3	187.0
(CH ₂) ₄ O		(24)	197.6	223.3	182.0	185.9
(CH ₂) ₅ O		(25)	198.5	219.1	182.9	186.5

Table 1. Experimental and calculated proton affinities for water and selected alcohols and ethers.

^a Experimental proton affinities based on $E_{pa}(NH_3) = 204.0$ kcal mol⁻¹ (ref. 2). ^b From ref. 3(c). ^c See the text.